Sharp regularity and Cauchy problem of the spatially homogeneous Boltzmann equation with Debye–Yukawa potential

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spatially Homogeneous Relativistic Boltzmann Equation with a Hard Potential

In this paper, we study spatially homogeneous solutions of the Boltzmann equation in special relativity and in Robertson-Walker spacetimes. We obtain an analogue of the Povzner inequality in the relativistic case and use it to prove global existence theorems. We show that global solutions exist for a certain class of collision cross sections of the hard potential type in Minkowski space and in ...

متن کامل

On the Regularity of Solutions to the Spatially Homogeneous Boltzmann Equation with Polynomially Growing Collision Kernel

The paper is devoted to the propagation of smoothness (more precisely L∞-moments of the derivatives) of the solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernels.

متن کامل

Regularity theory for the spatially homogeneous Boltzmann equation with cut-off

We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the singularities of the initial datum. Our proofs are based on a detailed study o...

متن کامل

The Boltzmann Equation with a Soft Potential I. Linear, Spatially-Homogeneous

The initial value problem for the linearized spatially-homogeneous equation has the form ~ + L f = 0 with f({, t = 0) given. Boltzmann The linear operator L operates only on the ~ variable and is non-negative, but, for the soft potentials considered here, its continuous spectrum extends to the origin. Thus one cannot expect exponential decay for f, but in this paper it is shown that f decays li...

متن کامل

Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation

For the spatially homogeneous Boltzmann equation with cutoff hard potentials it is shown that solutions remain bounded from above, uniformly in time, by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.06.039